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This article illustrates ways that dynamic software using some 

sophisticated techniques in Excel can be used to demonstrate 

fundamental ideas related to regression and correlation 

analysis to increase student understanding of the concepts and 

methods in elementary statistics courses and in courses at the 

college algebra/precalculus level that stress ideas on curve 

fitting techniques.   

 

 

1 INTRODUCTION 

 

One of the standard topics in introductory statistics is 

linear regression and correlation analysis.  Regression is the 

process of finding the best line, in the least squares sense, to 

fit a set of data that falls into a roughly linear pattern; 

correlation is a way to measure how well the regression line 

actually fits the data.  

 

Unfortunately, for many students in introductory 

statistics, the ideas on regression lines seem to have nothing to 

do with anything they have seen before in mathematics.  Their 

vague recollection from algebra classes is that lines have 

something to do with finding an equation based on two points 

using a quantity called the slope that they often never really 

understood.  The fact that regression involves dozens, if not 

hundreds, of points and that the line they are expected to 

produce does not necessarily pass through any of them seems 

like a totally different concept.   

 

Moreover, the calculations involved in finding the 

equation of the regression line and the value of the correlation 

coefficient are so involved that it is almost essential to utilize 

technology.  All graphing calculators contain routines for 

constructing the regression line for any set of x-y data and the 

value of the associated correlation coefficient, as do statistical 

software packages and spreadsheets such as Excel.  It is this 

capability that makes it reasonable to bring these topics to the 

forefront of introductory statistics courses, as well as courses 

in college algebra and precalculus that focus on curve-fitting 

as a way to illustrate the use of various families of functions.  

At the same time, the techniques all too often become reduced 

to button-pushing routines and far too many students come 

away with very little in the way of basic understanding of the 

underlying fundamental concepts.  In particular, they don’t 

understand the significance of: 

• the variation in the results due to the variations 

between different samples; 

• the effects of sample size on the results; 

• the effects of changes in the sample data or the 

sample statistics on the results. 

 

Yet, these are the fundamental issues that lie at the heart of 

every statistical technique, not just regression and correlation.  

Gaining a solid understanding of these ideas requires the use 

of dynamic software to bring the ideas to life and so make a 

far stronger impact on the students, as we demonstrate in this 

article. 

 

 

2 BACKGROUND 

  

Although in most mathematicians’ minds, the algebra-

precalculus-calculus and beyond track is the dominant focus 

for the mathematics curriculum, at least in the United States, 

introductory statistics courses have eclipsed calculus in terms 

of the total number of students taking courses.  At the college 

and university level, in 2010, some 449,000 students took 

introductory statistics courses offered by mathematics 

departments and statistics departments (Blair et al., 2012).  

This total was growing at an annual rate of slightly over 7%.  

In addition, many times more students take introductory 

statistics courses offered by other departments that prefer to 

give their own versions of the course under names such as 

biostatistics, econometrics (for economics), psychometrics 

(for psychology), social statistics (for sociology), and so on.  

Admittedly, probably a good 90% of the content of these 

courses overlap.   

 

In addition, statistics is rapidly growing in popularity as 

an elective course in American high schools.  In 2016, over 

206,000 students took the national final exam in the Advanced 

Placement (AP) course in statistics (The College Board, 

2016), up over 6% from the previous year.  Many other 

students take the course, but do not take the final exam. 

 

In comparison, in 2010 the total enrollment in “calculus-

level” mathematics courses in colleges and universities was 

approximately 886,000, (Blair et al., 2012).  Note, though, that 

this includes up to three semesters of calculus, differential 

equations, linear algebra, and discrete mathematics, so the 

actual number of students, as opposed to enrollment, was 

considerably smaller.  Moreover, this total was growing at an 

annual rate of about 5%.  In addition, about 433,000 high 

school students took the AP calculus final exam in 2016, an 

increase of about 3% over the previous year according to The 

College Board, (2016).
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Consequently, it appears that there are many more 

students in the U.S. who are taking introductory statistics 

courses each year than there are in calculus courses, and the 

growth rates appear to be higher in statistics.  In turn, this 

suggests that it is becoming increasingly important to focus 

attention and resources on improving student learning of 

statistics, a subject that tends to be far more counter-intuitive 

than calculus and one that tends to attract students who are 

mathematically less sophisticated than those who take 

calculus. 

 

Moreover, at most large universities in the U.S., 

introductory statistics courses are given either by a statistics 

department with statistically-trained faculty or by individual 

departments (such as economics, business, biology, 

psychology, etc) that use statistics heavily, so the faculty are 

well versed in statistics.  At some small colleges, the 

introductory statistics courses are given by trained statisticians 

who are often in the mathematics department.   

 

However, at many schools, particularly two-year colleges 

and most four-year colleges, introductory statistics courses are 

offered by the mathematics department with instructors (often 

part-time faculty) having little, or no, formal statistical 

training.  According to the 2010 CBMS study (Blair et al., 

2012), over 400,000 students took introductory statistics in a 

mathematics department; this number represents about four 

times the number taking such a course through a statistics 

department.  Moreover, the AP (Advanced Placement) 

Statistics program in the high schools has been growing 

extremely rapidly (The College Board, 2016); in 2002, about 

50,000 students took the AP exam at the end of the course, and 

this number had been growing at an annual rate of about 25%.  

As with the college mathematicians who teach the 

introductory statistics courses, most of the high school 

teachers have had very little, if any, formal statistical training 

(though many have had a short teacher development workshop 

in statistics).  It is these two groups to whom this article is 

primarily directed. 

 

It is not just that these individuals’ training has been 

almost exclusively in mathematics or mathematics education, 

but that most of their professional focus has been 

mathematically related as opposed to statistically related.  As 

such, they may be familiar with articles in the mathematics 

journals, but rarely any in publications focused on statistical 

education such as the online Journal of Statistics Education.  

As such, they are often not particularly current in terms of 

statistical education.   

  

 

3 DYNAMIC PROGRAMS IN EXCEL   

 

Two key notions that underlie virtually every concept and 

method in statistics are randomness and variation among 

samples.  Has the sample been collected in a truly random 

fashion that reflects the underlying population?  How 

representative of that population is this one sample?  How 

does this single sample compare to other possible samples 

drawn from the same population? 

  

Fortunately, most of the critical topics in probability and 

statistical inference can be dramatically presented using 

computer graphics simulations to allow students to visualize 

the underlying statistical populations and so enhance their 

understanding of the statistical concepts and methods.  Many 

years ago, we addressed the challenge of making these notions 

evident to students by developing a comprehensive package of 

computer graphics simulations using BASIC that addressed 

virtually every topic in introductory probability and statistics.   

Unfortunately, BASIC routines have become outmoded over 

the years, especially in terms of being able to provide students 

(or even colleagues) with copies of the files to explore the 

statistical concepts on their own computers.   

 

We have lately returned to this challenge and have 

developed a much more extensive package of dynamic 

interactive graphical simulations of the mathematics 

(DIGMath) using Excel because it is available on almost all 

computers today.  Moreover, Excel has the further advantages 

that it does not require any plug-ins or internet connections, as 

for example, using Flash, Java, or JavaScript, and it is the 

standard technology tool for virtually every discipline outside 

of mathematics.  (The complete package can be downloaded 

from our websites (S.P. Gordon & F.S. Gordon, 2017) or (F. 

S. Gordon & S.P. Gordon, 2017) for use either by instructors 

for in-class demonstrations of these ideas or by students for 

individual or small-group investigations and/or projects, as 

discussed at the end of this article.)  

 

In the intervening years, many other statistics educators 

have thought deeply about these issues and have developed 

specialized software tools to implement random simulations 

of many of the basic statistical ideas and techniques.  These 

issues have been discussed in a variety of articles, primarily in 

the statistics literature, as summarized by Mills (2002) for the 

early years, as well as in individual papers in the Journal of 

Statistics Education.  All of the articles in volumes 1 through 

24 of the latter from 1993 through 2014 can be accessed from 

the journal’s website, The Journal of Statistics Education, 

(1993-2015); subsequent issues from 2015 (volume 25) on can 

be found at The Journal of Statistics Education, (2016 -).  

There are many applets available on the Web and many of the 

same kinds of simulations can be generated using statistical 

software packages such as Minitab.  These efforts have had 

considerable impact on the teaching of statistics among 

professional statisticians, but probably much less impact on 

the teaching of statistics by mathematicians or by statistical 

users in other disciplines.  In part, this may be due to the fact 

that mathematics faculty without statistical training are often 

uncomfortable with using such statistical packages in the 

classroom;  others feel it is not appropriate to require students 

to purchase specialized software in addition to an expensive 

textbook and calculator;  others feel that the one software tool 

that almost all of their students will someday use in other 

courses and on the job is Excel (and the majority of students 

today appear to arrive on campus already knowing how to use 

it).  As a consequence, there seem to be good reasons to have 

such simulations available in Excel, so that both faculty and 

students can have easy access to their use without needing to 

expend money or time in learning new programs.
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In this article, we discuss ways in which such dynamic 

software can be used to enhance student understanding of the 

fundamental concepts related to regression and correlation. As 

will be illustrated later in the article, these spreadsheets all use 

sliders and other Excel controls to provide dynamic effects in 

which parameters and statistical measures can be changed and 

the resulting effects can be seen virtually instantaneously.  

Some utilize random simulations to illustrate the variations 

that occur in the results due to different samples.  

 

In particular, we will discuss the various aspects of 

regression and correlation that can be enhanced using such 

software.  Many of the same things can certainly be done using 

the applets available on the Web; however, we focus 

specifically on ways to use such software as teaching and 

learning tools to enhance student understanding of the 

statistical ideas and methods, something that is not always 

incorporated in the on-line software. 

 

 

4 SIMULATIONS FOR REGRESSION ANALYSIS  

 

We begin by considering the notion of linear regression.  

Virtually every problem in statistics textbooks gives the 

students a single set of data and asks them to construct the 

regression line based on that data and perhaps use the equation 

to answer some predictive questions.  Regression analysis also 

arises in all courses in the lab sciences, where students 

similarly collect one set of sample data and have to construct 

(possibly only graphically) a line that fits the data.  Similarly, 

as mathematical modeling becomes ever more prominent in 

high school algebra, college algebra, and precalculus courses, 

students are also expected to fit a line (or other non-linear 

function) to a set of data, assess how good the fit is, and use 

the function so constructed as a model to answer predictive 

questions.  In all of these settings, most students rarely 

appreciate the fact that the set of data they have is just one 

possible set of bivariate data for the two variables under 

consideration.  Rather, they get so involved in finding the line 

(or curve) that fits the data, either graphically or using 

technology or, worst yet, by performing the actual 

calculations, that they lose sight of the underlying statistical 

ideas.   

 

Furthermore, in the process of discussing the regression 

line to fit a set of data, particularly laboratory data, it is natural 

to emphasize that there could be many different sets of data, 

each leading to a different regression line.  A simple computer 

graphics simulation provides the visual support to make these 

different lines come to life and provides the means for an 

investigation on the effects of using different sample sizes.  

We have developed a very effective version of such a 

simulation in Excel that is available to any interested reader.  

It allows the user to select the sample size n (between 2 and 

40) and the number of such samples (between 5 and 20).  It 

then generates repeated random samples of size n from an 

underlying bivariate population that falls into a roughly linear 

pattern, as shown in Figure 1.  The program then calculates 

the regression line for each random sample and displays the 

line graphically as illustrated in Figure 2. 

.

 
Figure 1  The underlying bivariate population 

 
For comparison, the simulation also shows the regression 

line for the underlying population.  In addition, the point 

(µx,µy) corresponding to the means µx and µy of the x-values 

and the y-values, respectively, is highlighted by the circle in 

the center.  Recall that the regression line always passes 

through the point ( x , y ) corresponding to the mean of the x’s 

and the mean of the y’s, so that this highlighted point certainly 

lies on the population regression line. 

 

In Figure 2, we show one set of results from this dynamic 

simulation that draws 10 random samples of size n = 3.  Figure 

3 shows a different run of the simulation, also with 10 samples 

of size n = 3.  Obviously, the results are dramatically different. 
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Figure 2  Simulated regression lines based on samples of 

n = 3 points 

 

Notice that the majority of the sample regression lines 

tend to be more or less similar to one another in terms of 

overall slope and position.  However, there are some 

regression lines whose slopes vary dramatically from that of 

the population’s regression line (the heavy line in the figure) 

and so are at very sharp angles to the population line; in fact, 

some of them are almost perpendicular to that line.  With 

samples of size n = 3, one can easily visualize selecting three 

points whose x-values are reasonably close to one another with 

relatively large differences in the y-values, so that the 

corresponding regression line would be at a steep angle 

compared to the population regression line.  However, this is 

very unlikely to happen with larger sample sizes, so that one 

should expect that the sample regression lines based on larger 

samples should be more closely aligned to the population 

regression line.  This image conveys the important message 

that regression analysis based on small samples can be highly 

suspect.  From a pedagogical standpoint, this kind of display 

can be very informative in helping the students see that each 

sample gives rise to a different regression line, though most of 

them remain relatively close to the population regression line, 

(at least when the sample size n is small), and most of them 

pass fairly close to the indicated point (µx, µy).   Furthermore, 

whenever a new set of samples is run (seemingly 

instantaneously at the push of a button), the resulting image 

will change dramatically as very different samples are likely 

drawn and hence very different sample regression lines are 

generated. 

 

When we use larger sample sizes, almost all of the sample 

regression lines have slopes that are very close to that of the 

population regression line and so the resulting sample 

regression lines usually lie much closer to the population line, 

as shown in Figure 4 with n = 25 points.  In turn, this reinforces 

the notion that increased sample size makes for far better 

predictions.  Moreover, the fan-shaped pattern seen here is 

quite typical of what happens – most of the lines have very 

similar slopes and most pass very close to the point (µx, µy).  

However, as one moves further away from this point, the 

various lines certainly tend to diverge from one another.   

Moreover, particularly with larger sample sizes, it 

becomes evident that almost all of the sample regression lines 

pass very close to the point (µx, µy).  For each sample, we 

expect that the mean, x , of the x’s should be a good estimate 

for the mean µx of all the x-values in the population and that 

the mean, y , of the y’s should be a good estimate for µy.  As 

a result, we should expect that, for any given sample 

regression line, the corresponding point ( x , y ) on it should 

be quite close to the point (µx, µy) on the population's 

regression line.  In turn, this explains why almost all of the 

sample regression lines pass close to the same point. 

 

This kind of investigation also provides a wonderful 

opportunity to stress two of the key themes in statistics – the 

effect of sample size on the outcome and the variation that 

occurs both within a sample and between different samples.   

 

  

Figure 3  Simulated regression lines based on samples of 

n = 3 points 

 

 

Figure 4  Samples regression lines with n = 25 
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5 SIMULATING THE CORRELATION COEFFICIENT 

 

We next turn to a consideration of the correlation 

coefficient r, which is used as a measure of how well a line 

fits a set of data.  In particular, the possible values for r range 

from a minimum of -1 to a maximum of +1.  Values of r close 

to 1 indicate a high level of positive correlation between the 

variables (the slope of the regression line is positive and the 

points are tightly clustered about the line) and values of r close 

to -1 indicate a high level of negative correlation (the slope of 

the regression line is negative and the points are also tightly 

clustered about the line).  Values of r close to 0 indicate no 

correlation and the points are widely distributed without any 

particular pattern about the regression line. 

 

Furthermore, the square of the correlation coefficient, r2, 

the coefficient of determination, indicates the percentage of 

the vertical variation in the data about the line that can be 

attributable to the linear model.  Thus, if r = 0.8, then r2 = 0.64 

and hence 64% of the variation can be explained by the linear 

function, so that 36% is not so explained.  

 

In order to determine whether the value r for the 

correlation coefficient based on a given set of data is "close 

enough to +1" or "close enough to -1" to conclude that there 

is indeed a high level of correlation between the two variables, 

one compares the value of r obtained to an appropriate critical 

value for the correlation coefficient from a statistical table.  

Each of the critical values corresponds to a different sample 

size n and, the larger that n is, the smaller the critical value.  

Thus, for a sample of size n = 5, the critical value is 0.878, so 

that the correlation coefficient for the data must be larger than 

this number in order to conclude that there is a statistically 

significant level of correlation.  Similarly, for a sample of size 

n = 15, the critical value is 0.514, so it is a much lower bar that 

one must get over to conclude statistical significance.  The 

reason is that the larger sample size provides considerably 

more information and hence one needs less conclusive 

evidence.  Honestly, these are fairly sophisticated notions that 

likely go over the heads of many students in introductory 

statistics. 

 

To provide deeper insight into these ideas, we have 

developed another dynamic spreadsheet to simulate the results 

of examining the correlation coefficients associated with 

many different bivariate samples drawn from the same 

underlying population used in the regression simulation.  The 

user has the choice of the sample size n, between 3 and 50, and 

the number of random samples, between 50 and 250. The 

program then generates repeated random samples of that size, 

calculates the correlation coefficient for each random sample, 

and displays the values graphically in a bar chart to show their 

distribution.  The program also displays the mean and standard 

deviation of the correlation coefficients from the random 

samples and allows the user to compare that mean to the 

correlation coefficient of the underlying population.  

 

In Figure 5, we show the results of one run of this program 

with 200 samples of size n = 7.  Notice that the resulting set of 

sample correlation coefficients seem to be widely scattered 

across the histogram from about r = 0.7 to r = 1 with the bulk 

of them clustered toward the right side with values above r = 

0.9.  (Occasionally, there will be a small cluster at the far left 

of the bar chart, which indicates samples for which there is 

little or no correlation; these are samples for which r is 0.5 or 

smaller.)  Moreover, the correlation coefficient for the 

underlying population is r = 0.926; for the samples in Figure 

5, the mean of the 200 correlation coefficients was 0.919 with 

a standard deviation of 0.082.  Despite the wide variation in 

the values of the sample correlation coefficients, their average 

is surprisingly close to that of the population and the standard 

deviation is fairly small.  Additional runs of the programs 

produce very comparable results, though the actual 

distribution will change fairly dramatically.  

 

Figure 5  The correlation coefficients of 200 random samples of size n = 7
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In Figure 6, we show the results with 200 samples of size 

n = 20.  Notice that almost all of these sample correlation 

coefficient values are clustered fairly closely about the 

population correlation coefficient value r = 0.926 in a shape 

that begins to look somewhat normal (although it is definitely 

skewed to the left).  This means that most of the regression 

lines associated with these samples have fairly comparable 

slopes.  The mean of the 200 correlation coefficients is 0.924, 

which is quite close to the population value r = 0.926, and the 

associated standard deviation is 0.036, which reinforces the 

conclusion that the distribution is much more densely packed 

about the population value.  Also, repeated sets of samples of 

the same size have the same properties.   

 

 
Figure 6  The correlation coefficients of 200 random samples of size n = 20 

 
 

Furthermore, Figure 7 shows the results of 200 samples 

of size n = 50, where we see that the correlation coefficient 

values are much more densely packed and the shape of the bar 

chart is even more suggestive of a normal shape. The 

corresponding mean of these 200 correlation coefficients is 

0.928 with a standard deviation of 0.018. Therefore, we see 

that, as the sample size increases, it becomes evident that the 

resulting sample correlation coefficients become ever more 

tightly clustered about the population correlation coefficient. 

 

 
Figure 7  The correlation coefficients of 200 random samples of size n = 50 

 

 
Moreover, as the sample size n gets closer to the 

maximum value of 50 allowed in this program, notice that the 

shape of the distribution of correlation coefficients looks more 

and more normal.  But it is always skewed because there is a 

fixed cut-off at the right, namely r = 1 and the underlying 

population has a correlation coefficient that is quite close to 1, 

while there can be a tail to the left.  Moreover, the mean of the 

sample values generated in the program are typically very 

close to the value of r for the underlying population, for any 

value of the sample size n.  Finally, notice how the value for 

the standard deviation typically gets smaller as the sample size 

increases.  This simply reflects the fact that, for larger samples, 

the values of the correlation coefficient are clustered ever 

more tightly about the population value and the spread 

diminishes dramatically.  Note, though, that merely increasing 

the sample size does not necessarily mean that the average of 

the sample correlation coefficient values will automatically be 

closer to the population correlation coefficient nor does it 

mean  that the  standard deviation  of those  sample  correlation
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coefficient values will automatically be smaller.  This is an 

important point to emphasize to students.  

 

 

6 EFFECTS OF AN EXTRA POINT ON THE 

REGRESSION LINE AND THE CORRELATION 

COEFFICIENT 

 

We next consider the effect that an extra point, say an 

outlier, can have on both the regression equation and the 

correlation coefficient using a third dynamic program. In this 

module, the user can experiment with an underlying set of 5 

points, 10 points, and 20 points, each found on a separate page 

(via a different tab at the bottom) of the spreadsheet.  The 

program draws the scatterplot of those data points and the 

associated regression line, along with the equation of that line 

and the corresponding correlation coefficient.  The location of 

the "extra" point is controlled by a pair of sliders that allow 

the user to move the point horizontally and vertically.  As it 

moves, the associated regression line based on the extended 

set of points is drawn and the corresponding equation of the 

line and the correlation coefficient are displayed, as illustrated 

in Figure 8.   

 

 

 
 

Figure 8  The effects of an extra point 

 

 
Students can easily see the effects of the position of the 

extra point.  When it is positioned relatively close to the 

regression line for the underlying set of data, the two 

regression lines are, visually, very close and the coefficients 

in both equations are numerically very close to one another.  

Also, the values for the correlation coefficients are close to 

one another.  As the extra point moves farther and farther away 

from the underlying regression line, the differences become 

more and more pronounced:   

• the slopes of the two regression lines become 

significantly different and hence the lines diverge 

more and more sharply from one another;   

• the intercepts of those lines become significantly 

different;   

• the two equations differ more and more from each 

other;  and  

• the values for the two correlation coefficients become 

more and more different.  

 

Moreover, when comparing the same kinds of changes 

when there are 5, 10, and 20 underlying points, students see 

that the effects of the extra point are greatly magnified when 

there are only five points and are less and less pronounced as 

the number of points increases.  This reinforces the notion that 

effects of an outlier are diluted with larger sample sizes, a 

fundamental concept that definitely needs repeated emphasis 

in different contexts for many students. 

 

 

7 VISUALIZING THE SUM OF THE SQUARES 

 

We next consider the use of the sum of the squares as an 

alternate way of measuring the goodness of the linear fit, so 

that students have a tool other than the correlation coefficient 

with which to make a decision.  Because there is a simple 

geometric image associated with it, most students in 

introductory statistics and in precalculus and algebra courses 

that incorporate curve fitting as a major topic find it more 

meaningful than the correlation coefficient that is calculated 

by some rather arcane formula.  In turn, when faced with the 

problem of finding the parameters – either the slope and 

intercept  of  a  line  or  the  parameters  associated with some
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nonlinear function – to improve on the fit of a function to the 

data by reducing the sum of the squares value, many students 

react to it as a challenge and excitedly experiment with the 

effects of varying the parameters to produce a better fit than 

anyone else in the class. 

 

As an exploratory tool to investigate the sum of the 

squares, one of the authors has developed still another 

dynamic spreadsheet that visually displays the sum of the 

squares associated with a set of data.  The user can select 

between 2 and 20 data points and then has to enter the 

coordinates for those points.  The program draws the 

scatterplot.  The program asks the user to supply values for the 

slope and the vertical intercept of a possible line that fits the 

data and the corresponding line is then superimposed over the 

scatterplot.  In addition, the program displays the value of the 

sum of the squares.  See Figure 9.  This allows students to 

experiment with changing the equation of the line via its 

parameters and seeing both visually and via the value for the 

sum of the squares how well the line comes to fitting all the 

data points.    

 

 

 
 

Figure 9  The sum of the squares 

 

 

8 OTHER LINES THAT FIT THE DATA 

 

In addition to the topics discussed above, the authors 

have also developed comparable dynamic spreadsheets to 

allow students and/or instructors to experiment visually 

with a variety of other topics dealing with the notion of 

fitting a line to a set of data.  One of these is a graphical 

implementation of the median-median line, which is 

implemented on many graphing calculators; this is based on 

creating a line by: 

1 partitioning the data into three groups (the lowest, 

the middle, and the greatest), 

2 finding the median of each group,  

3 using the two points corresponding to the first and 

the third median values; and 

4  adjusting that line based on the second median 

value to produce a line to fit the data.   

 

A second spreadsheet is a random simulation of the 

median-median line that generates many random samples 

from the underlying bivariate population, calculates and 

draws the corresponding median-median lines, and displays 

the associated statistical values.   

 

In a similar way, a third program simulates the quartile-

quartile line, which creates a line to fit a set of data by 

finding the first and fourth quartiles of the data and finding 

the line that passes through those two points.  

 

A fourth program is a simulation of all three best-fit 

lines in which the user can select the sample size (between 

4 and 40) and the program generates a random sample of 

that size from the same underlying bivariate population 

used previously and displays the associated scatterplot.  The 

program then calculates and displays the regression line, the 

median-median line, and the quartile-quartile line, as well 

as the value for R2, the coefficient of determination for each 

of the three lines to provide a measure of how well each line 

fits the sample data.  The idea is to compare how well each 

of the three lines, each based on a different approach, fits 

the data.  While we do not go into any further details here, 

all of these programs are available for download from the 

authors' websites. 



www.manaraa.com

                              Visualizing and Understanding Regression and Correlation Using Dynamic Software                        31] 

 

 

www.technologyinmatheducation.com                                                                      International Journal of Technology in Mathematics Education Vol 25, No 2 

9 RELATED CURVE FITTING ROUTINES 

 

One of the present authors (S.P. Gordon, 2017) has also 

created a variety of related dynamic spreadsheets for 

demonstrating and experimenting with nonlinear curve 

fitting.  One fits the best exponential function to a set of data 

entered by the user; another fits the best power function to 

a set of data.  A third generates the best linear, exponential, 

and power function to fit a set of data, so that the user can 

see and compare all three to decide which seems to be the 

best choice among the different candidates.  Still another 

performs polynomial regression where the user has the 

choice of the desired degree.  And, finally, one fits a 

sinusoidal function (either a sine or a cosine) to a set of 

roughly periodic data.  

   

 

10 CONCLUSIONS 

 

For most students in introductory statistics, the 

fundamental concepts regarding regression and correlation 

are quite sophisticated, particularly the ways in which the 

result can vary dramatically from one sample to another.  In 

addition, the manner in which the results change as a 

function of the sample size can also be challenging for many 

of these students to graph.  The use of dynamic software 

simulations (whether the ones developed by the authors or 

others available on-line) can provide invaluable teaching 

and learning tools to increase student understanding of the 

ideas and help them master the concepts in ways that make 

the techniques more understandable and hence adaptable to 

many different situations that will arise in other courses and 

in increasingly many careers. 

 

All of the dynamic spreadsheets mentioned here, as 

well as many others covering virtually every topic in 

introductory statistics and probability, can be downloaded 

from the authors’ websites.  If interested readers have any 

suggestions for additional topics they would like to see 

treated, they are encouraged to contact the authors with their 

suggestions. 
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